

Vehicle-Snow Interaction: Modeling, Testing and Validation

Jonah Lee
Department of Mechanical Engineering
University of Alaska Fairbanks

October 12, 2009
Goodyear Tech Center, Luxembourg

maintaining the data needed, and including suggestions for reducin	completing and reviewing the colle g this burden, to Washington Head ould be aware that notwithstanding	ction of information. Send comme quarters Services, Directorate for I	ents regarding this burden estim information Operations and Rep	nate or any other aspect ports, 1215 Jefferson D	existing data sources, gathering and of this collection of information, avis Highway, Suite 1204, Arlington with a collection of information if it	
1. REPORT DATE 2. REPORT TYPE		2. REPORT TYPE		3. DATES COVERED		
12 OCT 2009		N/A		-		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Vehicle-Snow Inte	Testing and Valida	ation	W56 HZV-08-C-0236			
				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S) Jonah Lee				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of Mechanical Engineering University of Alaska Fairbanks, USA				8. PERFORMING ORGANIZATION REPORT NUMBER 20246		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA				10. SPONSOR/MONITOR'S ACRONYM(S) TACOM/TARDEC		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S) 20246		
12. DISTRIBUTION/AVAI Approved for pub	LABILITY STATEMENT lic release, distribut	tion unlimited				
13. SUPPLEMENTARY NO The original documents	OTES ment contains color	images.				
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC		17. LIMITATION	18. NUMBER	19a. NAME OF		
a. REPORT	b. ABSTRACT	c. THIS PAGE	OF ABSTRACT SAR	OF PAGES 42	RESPONSIBLE PERSON	
unclassified	unclassified	unclassified	DAK	72		

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

- Part I Snow mechanics
 - Background
 - Experimental procedure
 - Tribometer for indentation, plowing, sliding tests
 - 3D X-Ray Microtomography for microstructure
 - Numerical modeling procedure
 - Typical results (indentation, plowing, compression, tension, penetration)
- Part II Vehicle-snow interaction
 - Alaska Instrumented Vehicle and profilometer
 - Validation of models

Background: Characteristics of (Geometric) Snow Models

Multi-scale in nature:

- um scale at the sub-grain level (microscale)
- mm scale at the grain level (mesoscale)
- cm scale at the terrain level (macroscale)

Stochastic in nature:

- Stochastic models at each scale (e.g., Gaussian Random Field at the mesoscale, semi-variogram at the macroscale)
- Key challenge:
 - Integrate ('patch') models at different scales

Background: Indentation, plowing and sliding

- Resultant Forces due to Sinkage/Ploughing and Longitudinal/Lateral Slips
- Motion Resistance, Shear Force and Drawbar

Background: Needs

- Microstructure (uncertainty) effect not assessed
- Need better understanding of deformation and failure mechanisms
- Little work done in plowing and sliding
- Size effect not understood

Background: Goals and Approaches

Goals:

- Develop models for the mechanical properties of different types of snow
- Quantify the associated uncertainties and understand the sources of uncertainties

Approaches:

- Experimental:
 - Microscale tests using microtribometer
 - Microstructural statistics using microCT scanner

– Numerical:

- Microscale simulations using a meshless method with appropriate constitutive laws
- Semi-analytical:
 - Continuum mechanics based stochastic models incorporating microstructural information

Experimental Procedure

Collection and storage of snow

- February to March, 2009, Tanana River, Fairbanks, Alaska
- Fine-grained just underneath the surface
- Coarse-grained about 20 cm from surface
- Snow temperature ~-6 C
- Stored in a freezer ~-25 C

Microtribometer –

- Temperature ~-10C
- Pin sizes (1/8", 1/4", 3/8", 1/2")
- Force or velocity control
- Multiple steps and modes (indentation, pin-on-disk etc.)

Experimental Procedure: tribometer setup

Environment

Pin-on-disc setup

Experimental Procedure: Skyscan 1172 Microtomography

Experimental Procedure: Snow Sample Holder

Diameter 1 cm

Experimental Procedure: Grey-level Cross-Sectional Image Sieved Snow < 1 mm Grain Size

7.344 mm by 7.344 mm

Resolution:1225 by 1225, Pixel size: 6 micron

Experimental Procedure: Grey-Level Histogram

Experimental Procedure: Segmentation

grey-level

binarized image

Experimental Procedure: Removal of Unconnected Parts

Binarized image

Remove speckles

Experimental Procedure: 3-D Visualization of a Cube of Snow Microstructure Side Length = 3.618 mm

Experimental Procedure: Extract Statistical Information from Images

Porosity (pore volume fraction)

Probability that two points a distance r apart will lie in pore space

Two-point probability function

Numerical Modeling: Generalized Interpolation Material Point (GIMP) method (1/2)

- Geometry from CT images
 - 148x148x148 voxels (48 um resolution);
 7.1mmx7.1mmx7.1mm
 - Each voxel (ice) is mapped to a material point (particle)
 - ~1 million particles
- Boundary conditions
 - Periodic on the sides (for indentation)
 - Frictionless
 - Speed of indentation is 71 mm/sec
- Indenters
 - 1/16", 1/8", 1/4"

Generalized Interpolation Material Point (GIMP) Method (2/2)

- Software: parallel code Uintah installed on a Sun cluster at Arctic Region Supercomputing Center
- Constitutive law used for ice particles
 - Elastic-brittle [cf. Johnson & Schneebeli (1999), Marshall and Johnson (2009)]
 - Failure according to maximum tensile stress
 - Post failure
 - Stress set to zero if mean stress is tensile
 - Stress set to mean stress if compressive
- Algorithm
 - Dynamic, explicit

Tests and Simulations

Tests

- Compression
- Indentation
- Plowing
- Sliding on compacted snow (future work)
- Penetration (future work)

Simulations

- Compression and Tension
- Indentation
- Plowing
- Sliding (future work)
- Penetration
- Triaxial tests

Typical Results: Indentation tests for fine snow

Microstructure after Indentation Tests via MicroCT

Fine-grained snow:

Top View Initial density: ~290 kg/m^3

Final density:~590 kg/m^3

Side View

Side View

Typical Indentation Simulation Results

Typical Indentation Simulation Results: Cumulative damage

Failed Particles from Indentation Simulation

UNCLAS: Dist A. Approved for public release

Characteristics of Indentation Test Curves

Background: Indentation modeling using continuum mechanics

*J.H. Lee, J. of Terramechanics (2009)

Potential Deformation Mechanisms

A: Upper 'yield' point (inelastic due to damage)

B: Lower 'yield' point

OAB: Initial yield zone

B-C: Hardening (additional damage)

C: Plateau stress

C-D: Compaction (little additional damage)

D-E: Densification (pressure bulb hits bottom)

Initial Peak Stress ('Upper Yield'): Coarsegrained

Results: Plowing tests

Results: Snow Penetration Simulations (45 deg inclusion angle)*

*Lee et al., Proceedings of ISTVS 2009

Results: Typical Penetration Geometry

Deformed snow

Failed particles

Results: Strengths from Inversion of Penetration Signals

Part II: Vehicle-Snow Interaction

- An instrumented vehicle (Alaska Instrumented Vehicle) to collect data about vehicle and wheel states
- A vehicle-mounted profilometer to measure terrain topology
- Equipment to obtain microstructure and mechanical properties of snow

Alaska Instrumented Vehicle

- 2008 Jeep Commander (with ESP)
- Vehicle states:
 - Longitudinal slip (via wheel longitudinal speed and wheel angular speed from ESP)
 - Vehicle speed, sideslip, wheel slip angle, yaw,
 pitch and roll (VBOX II SX ?+ ESP)
 - Wheel forces and moments
 - Kistler's wheel-force transducers (a set of 4)
- Validation on pavement first

Terrain Profiling

- Vehicle-mounted profilometer (Kern and Ferris, 2007)
 - Inertial navigation system (INS) to determine the position and orientation of the vehicle
 - Differential GPS system
 - Inertial measurement unit (IMU) gyros and accelerometers for orientation and position
 - Scanning laser for profiling
 - 4-meter wide scan (claimed accuracy of vertical measurements 0.7-1.0 mm)
 - Claimed horizontal precision is 1mm for shortdistance traveled

Measurements Needed

- Depth of snow cover ~5 cm 30 cm
- Snow density and in-situ compressive strength
- Mechanical properties and microstructure by collecting and transporting select samples from field to lab
- Vehicle and wheel states

Tentative Test Protocols: Before Vehicle Travel

- Select areas for types of snow (dry, wet, windblown etc.), depth of snow, strength of snow – with enough room to maneuver the two vehicles (AIV and profilometer)
- Measure snow depth by profiling ground twice – with and without snow (winter first, summer later)
- Measure snow properties along the intended path before vehicle travel

Tentative Test Protocols

Passes:

- Single pass: rut created by front wheels not traveled by rear wheels for virgin snow
- Multiple passes for compacted snow
- After vehicle travel:
 - Measure sinkage (3D) using profilometer
 - Measure deformed mechanical properties of snow

Maneuvers:

- Combination of driven and driving wheels
- Longitudinal and lateral motions
- Effects of ESP

Development and Validation of Models for Virtual Proving Ground

- Development of stochastic terrain models
- Improvement of indentation model (J. Lee, 2009)
- Validation of stochastic tire-snow interaction model for combined slip (Li et al., 2009)
- Validation of finite element tire-snow interaction model for combined slip (J. Lee, under review)
- Validation of time-dependent tire-snow interaction model for combined slip (Lee and Liu, 2006)

People

- Daisy Huang, Ph.D. student, UAF: mechanical properties of snow.
- Steve Meurer, US Army Cold Region Test Center, Fort Greely, Alaska (the only winter test track in Alaska): instrumentation and vehicle-snow interaction.
- Tom Johnson, Mechanical Engineer, UAF: instrumentation and vehicle-snow interaction.
- Dr. Al Reid, TARDEC: terrain profiling
- Open position of a postdoctoral fellow in vehicleterrain interaction.

Collaborators

- Dr. Jim Guilkey, Schlumberger
- Hongyan Yuan, Penn State University, stochastic modeling of snow
- Dr. Jerry Johnson, UAF: snow mechanics and physics
- Professor Hans-Peter Marshall, Boise State University: snow mechanics and physics
- Professor Corina Sandu, Virginia Tech University: terrain topology, vehicle-terrain interaction
- Professor Zissimos Mourelatos, Oakland University: uncertainty modeling

Acknowledgements

- Arctic Region Supercomputing Center (ARSC).
- US Army TARDEC through the Simulation Based Reliability and Safety (SimBRS) research program.
- US Army TARDEC through the Automotive Research Center (ARC) led by the University of Michigan.
- US Army Cold Region Test Center (CRTC).